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Concordance 𝛬CDM…

The simplest model consistent with most observations.

+ flat spatial geometry and initial conditions
consistent with single-field inflation

Neutrino-to-photon energy density ratio 
fixed by SM physics, 𝜌! ≈ 0.67𝜌"
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Cosmic neutrino 
background 
𝑡 ~ 1s, 𝑇 ~ 1 MeV

Primordial 
nucleo-
synthesis
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Formation of the C𝜈B…

The C𝜈B is formed when neutrinos decouple from the cosmic plasma.

4

Above	𝑻	~	𝟏	𝐌𝐞𝐕, even the Weak Interaction 
occurs efficiently enough to allow neutrinos to 
scatter off 𝑒!𝑒"	and other neutrinos, and attain 
thermodynamic equilibrium.

Below 𝑻	~	𝟏	𝐌𝐞𝐕, expansion dilutes 
plasma, and reduces interaction rate: 
the universe becomes transparent to 
neutrinos.

Neutrinos 
“free-stream”
to infinity.

Γ)*+,~𝐺-.𝑇/

𝐻~𝑀01
2.𝑇.

Interaction rate:

Expansion rate:

Γ!"#$ > 𝐻 Γ!"#$ < 𝐻



The cosmic neutrino background…
Standard model predictions

Relativistic Fermi-Dirac
distribution

Number density:

Energy density:
• Relativistic (if 𝑇789 ≫ 𝑚:	):

• Non-rel (if 𝑇789 ≪ 𝑚:	):

𝑇CνB =
4
11

!/#

𝑇CMB

𝑛$,& ≃ 110	cm'#

𝜌:,? ≃
7
8

4
11

@/B
	𝜌C

Ω8,? ≃
𝑚:,?

93	ℎ.	eVNeutrino (hot) dark matter
→ cosmological neutrino mass bounds

Temperature:

Per family of 
neutrinos
+antineutrinos

after 𝑒#𝑒$ → 𝛾𝛾
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3𝜌!,&
𝜌"

~0.68



Effective number of neutrinos…

A common practice is to express the neutrino-to-photon energy density 
ratio in terms of the effective number of neutrino 𝑵𝐞𝐟𝐟 parameter.
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#
*

𝜌+,* = 𝑁-..×
7
8

4
11

//1
𝜌2

Energy density in one thermalised species 
of massless fermions with 2 internal d.o.f. 

and temperature 𝑇! =
'
((

(/*
𝑇" .

The SM value is 𝑁/00
12 = 3.0440 ± 0.0002, for

• 3 families of neutrinos + antineutrinos
• A variety of %-level SM effects that alter both 𝜌:,?  

and 𝜌D  from their naïve expectations.



Extending 𝑁!"" to light BSM thermal relics…

Any light (~sub-eV mass), feebly-interacting particle species produced by 
scattering in the early universe will look sort of like a neutrino as far as 
cosmology is concerned.

• E.g., light sterile neutrinos, thermal axions, …

• At leading order, these light thermal relics add to the SM neutrino energy 
density as if 𝑁()) ≳ 3.

→ Re-interpret 𝑁()) as the early-time non-photon radiation content:
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#
*

𝜌+,* + 𝜌345-6 = 𝑁-..×
7
8

4
11

//1
𝜌2

𝑁*EE = 𝑁*EE
FG + Δ𝑁*EE



Why is 𝑁eff	interesting?

We cannot detect the C𝜈B in the lab.  But we can discern its presence 
from its impact on the events that take place after its formation.
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𝑁eff and nucleosynthesis…
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Primordial nucleosynthesis takes 
place at 𝑇~𝑂 100 − 𝑂 10 	keV, 
shortly after neutrino decoupling.

• Changing the expansion rate affects the 
production of all light elements. 
• The largest effect is on He4, because 

• Almost all neutrons end up in He4.
• The neutron-to-proton ratio depends 

strongly on how expansion affects the 𝛽-
processes:

𝜈- +𝑛 ↔ 𝑝+ 𝑒$

𝜈̅- +𝑝 ↔ 𝑛+ 𝑒#
Kawasaki, Kohri, Moroi & Takaesu 2018



𝑁eff and nucleosynthesis…
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Primordial nucleosynthesis takes 
place at 𝑇~𝑂 100 − 𝑂 10 	keV, 
shortly after neutrino decoupling.

• Changing the expansion rate affects the 
production of all light elements. 
• The largest effect is on He4, because 

• Almost all neutrons end up in He4.
• The neutron-to-proton ratio depends 

strongly on how expansion affects the 𝛽-
processes:

𝜈- +𝑛 ↔ 𝑝+ 𝑒$

𝜈̅- +𝑝 ↔ 𝑛+ 𝑒#

Pitrou, Coc, Uzan & Vangioni 2018

𝑁*EE = 2.88 ± 0.27	(68%	CL)



𝑁eff and the CMB anisotropies…

𝑁-.. also affects the expansion rate at recombination (𝑇~0.2	𝑒𝑉), 
observable in the CMB temperature power spectrum
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“Naïve” 
signature

• If you plug different values of 
𝑁()) into CAMB or CLASS, this is 
what you’ll get. 

• But this is not the “real” effect 
of 𝑁()), because degeneracy 
with, e.g., the matter density 
𝜔*, the Hubble parameter ℎ, 
etc., can largely offset it.



𝑁eff and the CMB anisotropies…

𝑁-.. also affects the expansion rate at recombination (𝑇~0.2	eV), 
observable in the CMB temperature power spectrum
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• Adjusting 𝜔* and ℎ to match 
the first peak height and 
location, the irreducible 
signature of 𝑁()) is in the 
damping tail.

Diffusion damping scale

Free electron 
density

Multipole	ℓ

ℓ*
ℓ
+
1
𝐶 ℓ
/2
𝜋 
[1
0/
	m
K
/ ]

Hou et al. 2013

Thomson 
cross section Hubble 

expansion
Baryon-to-
photon 
density ratio

𝑁*EE = 2.99 ± 0.34	(95%	CL)
Planck TTTEEE
+lowE+lensing+BAO; 
7-parameters

Aghanim et al. [Planck] 2021



What to expect in the future?
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John CarlstromFuture 
uncertain…



What to expect in the future?
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John Carlstrom2027/34Future 
uncertain…



This talk…

Motivated by these future sensitivities to 𝑁-.., we have dedicated a series 
of papers on computing the Standard-Model value 𝑁-..

78 accurate to at 
least three decimal places.

• What goes into the calculation of 𝑁-..
78 = 3.0440 ± 0.0002

• What other effects have been considered

• What remains to be done
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Precision theoretical calculation 
of the Standard-Model 𝑁!""

'(…
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The papers…

Towards a precision calculation of 𝑁GHH in the Standard Model:

1. The QED equation of state, JCAP 03 (2020) 003 [arXiv:1911.04504].

2. Neutrino decoupling in the presence of flavour oscillations and finite 
temperature QED, JCAP 04 (2021) 073 [axXiv:2012.02726]; Benchmark

3. Improved estimate of NLO contributions to collision integrals, JCAP 06 
(2024) 032 [arXiv:2402.18481].

4. Impact of positronium formation, arXiv:2411.14091.

5. More collision integral @ NLO, in prep.
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The team…

Leadership:
• Yvonne Wong, Marco Drewes, Michael Klasen (since 2024)

Our students and postdocs:
• UNSW: Giovanni Pierobon (4), Jack Bennett (1,2)
• UCLouvain: Yannis Georis (3, 4, 5), Gilles Buldgen (1,2)
• Münster: Adrian Finke (5), Luca Wiggering (3,5)

Friends with special tools:
• IFIC Valencia: Sergio Pastor (2), Stefano Gariazzo (2), Pablo de Salas (2)
• TU Munich: Tobias Binder (4)
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Also recent works by others…

Comparable to our benchmark paper 2 including correction from our 
paper1:
• Akita & Yamaguchi, JCAP 08 (2020) 012 [arXiv:2005.07047].
• Froustey, Pitrou & Volpe, JCAP 12 (2020) 015 [arXiv:2008.0107].

Collision integral @ NLO; comparable to our papers 3 and 5:
• Cielo, Escudero, Magano & Pisanti, PRD 108 (2023) L121301 [arXiv:2306.05460].
• Jackson & Laine, JHEP 05 (2024) 089 [arXiv: 2312.07015]; arXiv: 2412.03958.

Anisotropic neutrino forward scattering:
• Hansen, Shalgar & Tamborra, JCAP 07 (2021) 017 [arXiv:2012.03948].
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Precision 𝑁!""
#$: an old subject…
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1982

2005
Grohs et al. 2016

3.052??



Electroweak
phase transition

Quark-hadron
phase transition

Weak interaction
goes out of
equilibrium

Nucleosynthesis
starts

Photon temperature
Time

Baryogenesis??

(WIMP) dark 
matter
production??

𝑔∗ 𝑇

𝑔∗ of the standard model of particle physics:

21

Precision 𝑁*EE
FG 

calculations = 
what happens 
here exactly?



Particle content at 0.1 < 𝑇 < 10	MeV…

The particle content and interactions at 0.1 < 𝑇 < 10	MeV determine the 
properties of the C𝜈B.
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𝑒±, 𝛾

𝑒#𝑒$ ↔ 𝛾𝛾

𝛾𝑒± ↔ 𝛾𝑒±

𝑒#𝑒$ ↔ 𝑒#𝑒$

𝜈2𝜈3 ↔ 𝜈2𝜈3

𝑒±𝑒± ↔ 𝑒±𝑒±
𝑒±𝑒∓ ↔ 𝑒±𝑒∓

𝜈: , 𝜈̅: ,
𝜈; , 𝜈̅; ,
𝜈< , 𝜈̅<

𝜈2𝜈̅3 ↔ 𝜈2𝜈̅3

𝜈̅2𝜈̅3 ↔ 𝜈̅2𝜈̅3

EM interactions (always in equilibrium 
@ 0.1 < 𝑇 < 10	MeV):

Weak interactions (in equilibrium @ 
𝑇 > 𝑂 1 MeV):

𝛼, 𝛽 = 𝑒, 𝜇, 𝜏Coupled @ 𝑇 > 𝑂 1 MeV

𝜈2𝑒± ↔ 𝜈2𝑒±

𝜈2𝜈̅2 ↔ 𝑒#𝑒$

Weak interactions (in equilibrium @ 
𝑇 > 𝑂 1 MeV)

• QED plasma: • 3 families of 𝝂 + ?𝝂:



Particle content at 0.1 < 𝑇 < 10	MeV…

The particle content and interactions at 0.1 < 𝑇 < 10	MeV determine the 
properties of the C𝜈B.
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𝑒±, 𝛾

𝑒#𝑒$ ↔ 𝛾𝛾

𝛾𝑒± ↔ 𝛾𝑒±

𝑒#𝑒$ ↔ 𝑒#𝑒$

𝜈2𝜈3 ↔ 𝜈2𝜈3

𝑒±𝑒± ↔ 𝑒±𝑒±
𝑒±𝑒∓ ↔ 𝑒±𝑒∓

𝜈: , 𝜈̅: ,
𝜈; , 𝜈̅; ,
𝜈< , 𝜈̅<

𝜈2𝜈̅3 ↔ 𝜈2𝜈̅3

𝜈̅2𝜈̅3 ↔ 𝜈̅2𝜈̅3

EM interactions (always in equilibrium 
@ 0.1 < 𝑇 < 10	MeV):

Weak interactions (not in equilibrium @ 
𝑇 ≪ 𝑂 1 MeV):

𝛼, 𝛽 = 𝑒, 𝜇, 𝜏

𝜈2𝑒± ↔ 𝜈2𝑒±

𝜈2𝜈̅2 ↔ 𝑒#𝑒$

Weak interactions (not in equilibrium @ 
𝑇 ≪ 𝑂 1 MeV)

• QED plasma: • 3 families of 𝝂 + ?𝝂:

Decoupled @ 𝑇 ≪ 𝑂 1 MeV



Thermal history of neutrinos…
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Events

Neutrino 
temperature

Photon temperature 𝑇D

Time

1	MeV

𝑇: =
4
11

H/B
𝑇D𝑇+ = 𝑇=

𝑓8 𝑝 ≈
1

exp ⁄𝑝 𝑇: + 1
Relativistic Fermi-Dirac

𝐻 ∼
𝑇/

𝑚56789:

Weak interaction:

Expansion:

Γ;8< ∼ 𝐺=/𝑇>

ΓIJK > 𝐻
Γ;8<~𝐻 Γ;8< < 𝐻

Neutrinos coupled 
to QED plasma

N
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→ Neutrinos/QED decoupled 

𝑒#
𝑒$

-a
nn
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n

𝑒#𝑒$ → 𝛾𝛾

𝑒#𝑒$ ← 𝛾𝛾

Kinematically 
forbidden

𝑚L = 0.5	MeV

Phase space 
distribution



Electroweak
phase transition

Quark-hadron
phase transition

Weak interaction
goes out of
equilibrium

Nucleosynthesis
starts

Photon temperature
Time

Baryogenesis??

(WIMP) dark 
matter
production??

𝑔∗ 𝑇

𝑔∗ of the standard model of particle physics:
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Precision 𝑁*EE
FG 

calculations = 
what happens 
here exactly?



Thermal history of neutrinos…
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Events

Neutrino 
temperature

Phase space 
distribution

Photon temperature 𝑇D

Time

1	MeV 𝑚L = 0.5	MeV

𝑇: =
4
11

H/B
𝑇D𝑇+ = 𝑇=

𝑓8 𝑝 ≈
1

exp ⁄𝑝 𝑇: + 1
Relativistic Fermi-Dirac

𝐻 ∼
𝑇/

𝑚56789:

Weak interaction:

Expansion:

Γ;8< ∼ 𝐺=/𝑇>

ΓIJK > 𝐻
Γ;8<~𝐻 Γ;8< < 𝐻

Neutrinos coupled 
to QED plasma
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→ Neutrinos/QED decoupled 

𝑒#
𝑒$
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𝑒#𝑒$ → 𝛾𝛾

𝑒#𝑒$ ← 𝛾𝛾

Kinematically 
forbidden



𝑇% from comoving entropy conservation…

27

Time

QED plasma 3 families of neutrinos + 
antineutrinos

𝑒±, 𝛾 𝜈: , 𝜈̅: , 𝜈; , 𝜈̅; , 𝜈< , 𝜈̅<
𝑆?@A =

11
45𝜋

/𝑇"*𝑎* 𝑆B =
7
30𝜋

/𝑇!*𝑎*

Pre-𝑒#𝑒$-annihilation

𝑇 D
=
𝑚
L

Post-𝑒#𝑒$-annihilation

𝛾

𝑆?@A =
4
45𝜋

/𝑇"*𝑎*

Same temperature 
pre-𝑒#𝑒$-annihilation1	

M
eV

𝑆B =
7
30𝜋

/𝑇!*𝑎*

Different temperature 
post-𝑒#𝑒$-annihilation 𝜈: , 𝜈̅: , 𝜈; , 𝜈̅; , 𝜈< , 𝜈̅<

De
co

up
lin

g

Comoving entropy 
conservation: 𝑇! =

4
11

(/*
𝑇"

C𝜈B-CMB 
temperature 
relation

𝑆?@A
5CD< + 𝑆B

5CD< = 𝑆?@A
5EF + 𝑆B

5G-



Naïve 𝑁!""
#$…

Taking 𝑇+ = ⁄4 11 >/1𝑇=, we expect the neutrino-to-photon energy 
density ratio at low temperatures (𝑇= ≪ 𝑚:) to be:

28

#
*

𝜌+,* = 3×
7
8
×

4
11

//1
𝜌2

Three families

Fermi-Dirac statistics

(Temperature ratio)4



Precision 𝑁!""
#$…

In reality, the neutrino-to-photon energy density ratio is about a percent 
higher than the naïve estimate:
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Deviations from 3 due to:
• Non-instantaneous neutrino decoupling
• Neutrino flavour oscillations
• Non-relativistic electron gas across neutrino decoupling
• Non-ideal gas corrections to the photon/electron plasma

#
*

𝜌+,* = 𝑁-..×
7
8
×

4
11

//1
𝜌2

Fermi-Dirac statistics

(Temperature ratio)4
𝑁FHH = 3.0440 ± 0.0002

Conventionally, we 
absorb all corrections 
into the 𝑁*EE parameter.

Corrections to 𝜌!

Corrections to 𝜌"



Correction to 𝜌1… 
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Deviations, or what’s wrong with this picture?
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Time

QED plasma 3 families of neutrinos + 
antineutrinos

𝑒±, 𝛾 𝜈: , 𝜈̅: , 𝜈; , 𝜈̅; , 𝜈< , 𝜈̅<
𝑆?@A =

11
45𝜋

/𝑇"*𝑎* 𝑆B =
7
30𝜋

/𝑇!*𝑎*

Pre-𝑒#𝑒$-annihilation

𝑇 D
=
𝑚
L

Post-𝑒#𝑒$-annihilation

𝛾
𝑆?@A =

4
45𝜋

/𝑇"*𝑎*

1	
M
eV

De
co

up
lin

g

Neither neutrino decoupling nor annihilation is instantaneous → some energy of the annihilation 
is transferred to the high-energy neutrinos still coupled.

𝑆B =
7
30𝜋

/𝑇!*𝑎*

𝜈: , 𝜈̅: , 𝜈; , 𝜈̅; , 𝜈< , 𝜈̅<

𝑇! =
4
11

(/*
𝑇"

C𝜈B-CMB 
temperature 
relation

Comoving entropy 
conservation: 𝑆?@A

5CD< + 𝑆B
5CD< = 𝑆?@A

5EF + 𝑆B
5G-

Out-of-equilibrium 
neutrinos → entropy 
conservation strictly 
does not hold.



Tracking non-instantaneous decoupling…

The effect of an out-of-equilibrium interaction on a particle species can be 
tracked using the Boltzmann equation.

𝑓( = Phase space density of the 
particle species of interest 

Hamiltonian for
particle propagation

Collision term

9D phase space integral
Energy-momentum
conservation

Matrix
element

Quantum 
statistical factors

• The collision term for e.g., 1 + 2 → 3 + 4

𝐶 𝑓! =
1
2𝐸!

67
&+,

-
𝑑#𝑝&
2𝜋 #2𝐸&

2𝜋 -𝛿- 𝑃! + 𝑃, − 𝑃# − 𝑃- 𝑀 ,

	×[𝑓#𝑓- 1 ± 𝑓! 1 ± 𝑓, − 𝑓!𝑓, 1 ± 𝑓# 1 ± 𝑓- ]

32

𝜕𝑓!
𝜕𝑡

= − 𝑓!, 𝐻 + 𝐶 𝑓!



Tracking decoupling including oscillations…

Tracking neutrino decoupling is complicated by neutrino oscillations.
• We promote the classical Boltzmann equation for the phase space density to a 

quantum kinetic equation (QKE) for the density matrix of the neutrino ensemble. 
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𝜕𝑓H
𝜕𝑡

= − 𝑓H, 𝐻 + 𝐶 𝑓H
𝜕 X𝜌H
𝜕𝑡 = −

1
𝑖ℏ X𝜌H, [𝐻 + \𝐶 X𝜌

X𝜌 =
𝜌LL 𝜌LM 𝜌LN
𝜌ML 𝜌MM 𝜌MN
𝜌NL 𝜌NM 𝜌NN

[𝐻 =
1
2𝑝𝑈

𝑚H 0 0
0 𝑚. 0
0 0 𝑚B

𝑈O + 𝑉̂P+KK*Q

Boltzmann Quantum kinetic equation

Density matrix (momentum-dependent)

Collision term

Hamiltonian

Vacuum oscillations + matter effects (“thermal masses”)Diagonal ~ occupation numbers
Off-diagonal ~ oscillation phases

e.g., Sigl & Raffelt 1993



Interactions at 0.1 < 𝑇 < 10	MeV…

The particle content and interactions at 0.1 < 𝑇 < 10	MeV determine the 
properties of the C𝜈B.
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𝑒±, 𝛾

𝑒#𝑒$ ↔ 𝛾𝛾

𝛾𝑒± ↔ 𝛾𝑒±

𝑒#𝑒$ ↔ 𝑒#𝑒$

𝜈2𝜈3 ↔ 𝜈2𝜈3

𝑒±𝑒± ↔ 𝑒±𝑒±
𝑒±𝑒∓ ↔ 𝑒±𝑒∓

𝜈: , 𝜈̅: ,
𝜈; , 𝜈̅; ,
𝜈< , 𝜈̅<

𝜈2𝜈̅3 ↔ 𝜈2𝜈̅3

𝜈̅2𝜈̅3 ↔ 𝜈̅2𝜈̅3

EM interactions (always in equilibrium 
@ 0.1 < 𝑇 < 10	MeV):

Weak interactions (in equilibrium @ 
𝑇 > 𝑂 1 MeV):

𝛼, 𝛽 = 𝑒, 𝜇, 𝜏Coupled @ 𝑇 > 𝑂 1 MeV

𝜈2𝑒± ↔ 𝜈2𝑒±

𝜈2𝜈̅2 ↔ 𝑒#𝑒$

Weak interactions (in equilibrium @ 
𝑇 > 𝑂 1 MeV)

• QED plasma: • 3 families of 𝝂 + ?𝝂:

These processes go into the 
collision integral and matter 
effects.



Collision integrals @ LO…
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Weak annihilation and scattering rates are currently computed to leading 
order in 𝐺?, i.e., 𝑂(𝐺?@).

• These have been incorporated in the quantum kinetic equations, which 
are solved with full momentum dependence plus quantum statistics in 
our benchmark paper 2 using a dedicated decoupling code 
FortEPiaNO.

• What about higher-order contributions?

Gariazzo, de Salas & Pastor 2019



Collision integrals @ NLO…
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There has been some recent interest in computing QED corrections (𝑇 = 0	+ 
finite-temperature) to the weak annihilation and scattering rates.

Cielo, Escudero, Mangano & Pisanti 2023

• Mainly motivated by claims of a 
large 𝛿𝑁()) ~0.001 from these 
corrections.

Jackson & Laine 2023, 2024
Drewes, Georis, Klasen, Wiggering & Y3W 2024

• However, a much smaller 
𝛿𝑁()) ≲ 10'. was found in 

independent works.
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Probably the fairest thing to say at this stage is that there is as yet no 
complete calculation of the effect of NLO weak rates on 𝑁-...

Correction First principles Finite me Quantum stats Solve QKEs

Paper 2 
(benchmark)

Type a only No; modelled as a 
thermal electron  
mass

Yes Yes Yes

Cielo et al. Types a-c 
only

No; mapped from 
stellar plasma 
calculations

Yes No In some 
approximation

Jackson & 
Laine

All Yes No; Hard 
Thermal Loop 
approximation

Yes No

Paper 3 Type d only Yes Yes Yes Damping 
approximation

• Paper 5 (in prep) will hopefully fix that.  Stay tuned!



Correction to 𝜌2… 
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Deviations, or what’s wrong with this picture?
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Time

QED plasma 3 families of neutrinos + 
antineutrinos

𝑒±, 𝛾 𝜈: , 𝜈̅: , 𝜈; , 𝜈̅; , 𝜈< , 𝜈̅<
𝑆?@A =

11
45𝜋

/𝑇"*𝑎* 𝑆B =
7
30𝜋

/𝑇!*𝑎*

Pre-𝑒#𝑒$-annihilation

𝑇 D
=
𝑚
L

Post-𝑒#𝑒$-annihilation

𝛾
𝑆?@A =

4
45𝜋

/𝑇"*𝑎*

1	
M
eV

De
co

up
lin

g

At 𝑇~1	MeV, 𝑒± are not 
ultra-relativistic, nor is the 
QED plasma an ideal gas to 
justify this expression.

𝑆B =
7
30𝜋

/𝑇!*𝑎*

𝜈: , 𝜈̅: , 𝜈; , 𝜈̅; , 𝜈< , 𝜈̅<

𝑇! =
4
11

(/*
𝑇"

C𝜈B-CMB 
temperature 
relation

Comoving entropy 
conservation: 𝑆?@A

5CD< + 𝑆B
5CD< = 𝑆?@A

5EF + 𝑆B
5G-



Non-relativistic (𝑚&/𝑇') correction to 𝑁!""...

Change in 𝑵𝐞𝐟𝐟:

• Even just allowing for a 
finite 𝑚/ in the QED 
plasma entropy will 
yield a large change 
𝛿𝑁()) ∼ 0.04.

• This 𝑚//𝑇0  correction 
to the C𝜈B temperature 
is in fact the dominant 
correction to 𝑁())

12. 
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Neutrino decoupling temperature

Bennett, Buldgen, Drewes & Y3W 2020

Realistic decoupling
temperature

𝛿𝑁FHH ∼ 0.04

ΓIF7: 𝑇J = 𝐻(𝑇J)



Non-ideal gas corrections from interactions…

The particle content and interactions at 0.1 < 𝑇 < 10	MeV determine the 
properties of the C𝜈B.
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𝑒±, 𝛾

𝑒#𝑒$ ↔ 𝛾𝛾

𝛾𝑒± ↔ 𝛾𝑒±

𝑒#𝑒$ ↔ 𝑒#𝑒$

𝜈2𝜈3 ↔ 𝜈2𝜈3

𝑒±𝑒± ↔ 𝑒±𝑒±
𝑒±𝑒∓ ↔ 𝑒±𝑒∓

𝜈: , 𝜈̅: ,
𝜈; , 𝜈̅; ,
𝜈< , 𝜈̅<

𝜈2𝜈̅3 ↔ 𝜈2𝜈̅3

𝜈̅2𝜈̅3 ↔ 𝜈̅2𝜈̅3

EM interactions (always in equilibrium 
@ 0.1 < 𝑇 < 10	MeV):

Weak interactions (in equilibrium @ 
𝑇 > 𝑂 1 MeV):

𝛼, 𝛽 = 𝑒, 𝜇, 𝜏Coupled @ 𝑇 > 𝑂 1 MeV

𝜈2𝑒± ↔ 𝜈2𝑒±

𝜈2𝜈̅2 ↔ 𝑒#𝑒$

Weak interactions (in equilibrium @ 
𝑇 > 𝑂 1 MeV)

• QED plasma: • 3 families of 𝝂 + ?𝝂:

Deviations from an ideal gas 
described by thermal QED



Finite-temperature QED…

Interactions of 𝑒±, 𝛾 modify the QED plasma away from an ideal gas.
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Lowest-order correction of 
the QED partition function

Ideal gas + EM interactions

Energy = kinetic energy + rest mass

Pressure = from kinetic energy

Energy = modified kinetic energy + T-dependent masses + 
 interaction potential energy

Pressure = from modified kinetic energy + EM forces

T-dependent 
dispersion relation

+ Forces

Modified QED equation of state



Finite-temperature effects on the QED EoS…

Finite-temperature corrections to the QED partition function at fixed 
order in the electric charge 𝑒 are well known.
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e.g., Kapusta textbook

• These can be easily implemented in the continuity equation to describe the 
energy density evolution in the QED sector: 

• The general outcome is a faster decrease of the photon temperature with 
expansion, leading to a larger 𝑵𝐞𝐟𝐟.

𝑑𝜌ABC
𝑑𝑡 + 3𝐻 𝜌ABC + 𝑃ABC = 𝑄 𝑄	 = Energy exchange 

with the neutrino sector



Neutrino decoupling temperature

Realistic decoupling
temperature

𝛿𝑁FHH ∼ 0.01

FTQED EoS correction to 𝑁!""…
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𝑂(𝑒/)

𝑂 𝑒/ + 𝑂 𝑒*

ΓIF7: 𝑇J = H 𝑇J

𝛿𝑁FHH ∼ 0.009

Change in 𝑵𝐞𝐟𝐟:
• Modified EoS causes the 

QED plasma to cool faster 
→ Neutrinos appear 
hotter by 𝛿𝑁()) ∼ 0.01.

• 𝑂 𝑒#  correction reduces 
the effect by 𝛿𝑁()) ∼
− 0.001.

• Higher order and non-
perturbative effects 
(bound state formation) 
|𝛿𝑁())| < 10'.. 

Bennett, Buldgen, Drewes & Y3W 2020



Summary of corrections so far…
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𝑁FHH
KL = 3.0440 ± 0.0002

Accounted for in 
benchmark calculation

Leading contribution from various effects on 𝑁-..
78:

~ − (10%& − 10%')Positronium formation



Where to now?
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𝑁FHH
KL = 3.0440 ± 0.0002

Accounted for in 
benchmark calculation

Leading contribution from various effects on 𝑁-..
78:

~ − (10%& − 10%')Positronium formation
Complete assessment of 
types (b-c) corrections; 
paper 5 (in prep) 



Summary…

Cosmological observables such as the CMB and light element abundances 
can be very sensitive to light relics.

• Their energy density is quantified by their contributions to the “effective number 
of neutrinos” 𝑁()) = 𝑁())12 + Δ𝑁()), where 𝑁())12 ≈ 3 is the Standard-Model 
expectation.

• CMB measurements currently constrain 𝑁()) to 10% uncertainty.
• In the future, percent-level precision measurements are possible.

• In light of this potential improvement, we have performed a new precision 
theoretical calculation of the Standard Model expectation, 𝑁())

56 = 3.0440 ±
0.0002; the new value has already been implemented in the latest releases of 
CLASS and CAMB.
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