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Introduction & Motivation

Standard Model (SM) in Particle Physics is
successful in explaining various phenomena

!

But Beyond Standard Model (BSM) exists!!!
E.g., Neutrinos have mass.

!

There are a number of new interactions
possible in BSM theories.

!

Along with Earth-based detectors, they can
be probed using new observations in
astrophysics/cosmology
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Goal: Can we probe BSM self-interacting neutrino

models (SINU) using the data from James Webb
Space Telescope (JWST) observations?




What is Neutrino-self Interaction

Loft = Gors(D T, Effective
i1 = Gens ()
L, = a2/

a — Scale Factor

Standard Model: G.;; = Gr ~ 10 'MeV

BSM: Gy - effective coupling strength

. . T,, = Neutrino Temperature
Moderately Interacting Neutrinos (MIv) :

—2.5 > logyo(Geff/MeV %) > —5.5

Strongly Interacting Neutrinos (SIv) :
—1 > logyo(Geps/MeV™?) 2 —2.5




History of the Universe & Structure Formation
[

Recombination Cosmic dawn Reionization
z=15-20 6<z<12

Neutral IGM

0.18 0.35

Universal age (Gyr)
Robertson 2022, ARAA

DM

Recombination == Dark Ages == o crdensities ™ Collapse of Gas == First
collapse under Galaxies

their own gravity

S Do we now have new
This region were not probed at all data in this region?
(before 2022).




Earliest Galaxies Observed

Young (thus hotter) stars emit in UV wavelengths
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These UV emissions get redshifted to longer
wavelengths (i.e., optical and IR)

Aobs — (1 + Z)Aemit

We need more IR telescopes
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JWST Observations

highest z~11

Where are the first

/ ~ stars/galaxies?

Physics beyond standard
ACDM (A-Cold dark matter)
Model?

Hubble Space Telescope .

ELECTROMAGNETIC SPECTRUM

VISIBLE §

GAMMA X-RAY ULTRAVIOLET ' MICROWAVE RADIO

Aobs = (1 + Z) ﬂemit

JWST is observing
infrared wavelengths at
high redshifts (z ~ 8—14)
using the following
instruments onboard:
NIRSpec, NIRCam, MIRI,
and NIRISS
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Three main questions to answer
e Whatis JWST looking at?

e How does Self-interacting neutrinos affect structure
formation?

e How do we probe neutrino self-interactions with JWST
data?



What is JWST looking at?



A little Background Cosmology

corresponding halo mass [M]
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What is UV Luminosity Function (UVLF)

The number density of halo

dn dn/dMj, e

. . . i — — within unit brightness

uv Luminosity Function: Qv dMv dMyy /dM}, interval at a particular
brighness
i dn £0 dlogo
Halo Mass Function: dlog M;, ]\/_[h‘f(a)‘ dlog M, ‘ Cosmology!
Dependence on o (R) = R RN G| 7 ¢ Number of galaxies per unit
272 /o volume.

P(k):

My : Magnitude (Brightness)

M, : Mass of a Halo.

.
Dependence on Star Astrophysics!! o(R) : Smoothed mass variance
as a function of scale (R).

formation rate:

Po : Mean density of the universe
at the present epoch

Neutrino interactions will change the ) S Fe s
(obtained from Press-Schechter
formalism, corrected for ellipsoidal

collapse)

cosmology part only!!!




What Has JWST Discovered?

(plots obtained by using https://github.com/XuejianShen/highz-empirical-variability.git)
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. We are studying the effect of change in
One can change the Astrophysics cosmology through BSM neutrino

or Cosmology! self-interactions!




How does self-interacting neutrinos affect
structure formation?



Neutrinos in the History of the Universe

Karl-Heinz-Spatscheck

QCD phase Neutrino Photon Structure
transition decoupling decoupling formation

Neutrino self interactions delay the free streaming of various
neutrino species.

How does that affect the structure formation?




Effect of neutrino self-interactions in the early Universe
2R,

Anisotropic stress: ¢=(1+ 5 )P fraction

@) : Are metric perturbations

R, : Neutrino free streaming

in newtonian gauge

______ SINUModel ACDM Model

Neutrinos == Free Anisotropic Early fre(;streaming
Interact Streaming Stress 60 Non zero Anisotropic
Delayed (Unique Stress
: characteristics

in the matter

power
spectrum
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Horizon entry and exit of different kK modes

Log(length)

Inflation Standard Cosmology

|
dn
nowadays

DT T Y e GG s vt [ Different Fourier modes enter the

decomposed into fourier modes horizon at different times (1/k ~
Horizon size)

e Higher k (small scales) enter at earlier epochs and lower k (large scales)
enter at later epochs.

e Some k Scale k¢, associated with neutrino free-streaming time!




Changes in the power spectrum

k’fs - Scale that enters the horizon
during neutrino free streaming
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How do we probe the neutrino self-interactions
with JWST data?



UV Variability

A halo of mass M and at a
redshift z, emits light of
magnitude oyy (M, 2)

Smaller masses and emit
brightly.

Increases the UVLF



Halo Mass and Redshift-dependent Variability

10910 Gerr v = —4.53433-277

% Shenet. al. o7y (10199 M., (2)
=== 0.98 +0.11 exp(0.42(z-10)-1)

> ie="0,1783%920

ouv(z, 1015 M) = 0.98 + 0.11(e%42(>-10) _ 1) M}, : Halo Mass

1010'5M@

ovv(z, M) = ouv(z, 1010’5M@) — 0.34log,, (



Parameter Space For LCDM
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https://github.com/XuejianShen/highz-empirical-variability.git

Parameter constraints for self-Interacting neutrinos
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Conclusions

e JWST is observing young, massive galaxies at
high redshifts.

e We can Probe BSM interactions using the data
from the starlight of these early galaxies.

e In this work, we are probing BSM neutrino self
interactions from these datasets.



