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Neutrino oscillation through curved spacetime

1 Terrestrial neutrino oscillation experiments like LBL or the study of
atmospheric neutrinos do not take account of the non-flatness of
spacetime geometry in the presence of matter.

2 Even when spacetime curvature can be neglected, torsional
interaction can alter the neutrino oscillation parameters. 1

3 We concentrate on neutrino oscillation inside a Core Collapse
Supernova. We will focus on the torsional part of the spacetime
geometry.

1S. Chakrabarty, A. Lahiri, Eur.Phys.J.C 79 (2019) 8, 697 and
R. Barick et al, Eur.Phys.J.Plus 139 (2024) 6, 461
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Torsion and Neutrino oscillation

1 At tree level EW interaction gives us a quartic interaction under
contact approximation. However, the ECSK theory will also produce
an effective four-fermion interaction, as we will see.

2 This new interaction will change the effective mass of neutrino. It will
contribute to the neutrino-matter interaction and neutrino-neutrino
interaction.

3 The collapse of a dying star of 10 M⊙ into a PNS of ≈ 10 km releases
≈ 1053 erg. Most of the energy is dispersed in forms of neutrinos.

4 The effect of spacetime geometry on the propagation of this intense
flux of neutrinos just outside of the ultra-dense core is often ignored.
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First order theory of gravity

Ingredients :

1 First order theory of gravity is an alternative formulation to gravity
which contains terms upto first order derivative.

2 The tetrads (eµa ) and the spin connections (Aµ
ab) are two

independent degrees of freedom.

3 Minimal coupling with the Dirac fermions.
∂µψ → Dµψ = ∂µψ − i

4Aµ
abσabψ

Conventions:

1 Latin indices (a, b · · · ) are the flat indices
Greek indices (α, β · · · ) are the curved indices.

2 σab = i
2 [γa, γb].

3 We will often use γµ to indicate the product eaµγa.

4 With eµa ebµ = δba .
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First order theory of gravity

Einstein Cartan Sciama Kibble theory (ECSK)

Lagrangian of Dirac fermions minimally coupled to gravity is

Lψ =
i

2

(
ψ̄γµ∂µψ − i

4
Aµ

ab ψ̄γcσabψ eµc + h.c.

)
−mψ̄ψ . (1)

The Ricci scalar can be written in terms of the spin connection Aµ
ab and

the tetrads eµa as
R = Fµν

abeµa e
ν
b , (2)

Where the field strength F is defined as

Fµν
ab = ∂µAν

ab − ∂νAµ
ab + Aµ

a
cAν

cb − Aν
a
cAµ

cb . (3)
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First order theory of gravity

First order theory of gravity contd.

Spin connections Aµ
ab has two parts

Aµ
ab = ωµ

ab + Kµ
ab. (4)

1 ωµ
ab : the Levi-Civita connection - given by the tetrads.

2 Kµ
ab : the contortion usually set zero in GR.

S =
1

2κ

∫
|e|d4x

(
R̂ + eµa e

ν
b∂[µKν]

ab + eµa e
ν
b

[
ω[µ,Kν]

ab
]
−

)
+

∫
|e|d4x

(
1

2κ
eµa e

ν
b

[
K[µ,Kν]

ab
]
−
+ Lψ

)
. (5)

1 κ = 8πGN is the Planck Mass squared.
2 R̂ is the Ricci scalar as calculated for the torsionless part of the

connection.
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First order theory of gravity

First order theory of gravity contd.

Varying with respect to K we get purely algebraic and axial solution. It is

Kµ
ab =

κ

8
ecµψ̄[γc , σ

ab]+ψ . (6)

If we allow parity violation then, the most generic form of Lψ is

Lψ =
∑

i=fermions

(
i

2
ψ̄iγ

µ∂µψi +
1

8
ωµ

abeµc ψ̄iγcσabψi −
1

2
mψ̄iψi + h. c.

)
+

∑
i=fermions

(
1

8
Kµ

abeµc
(
λiLψ̄iL [γc , σab]+ ψiL + λiR ψ̄iR [γc , σab]+ ψiR

))
(7)

We have modified the spinor derivative only. The structure of the ωµ
ab is

kept unchanged. Only the Kµ
ab part is generalized to accommodate the

parity violation.
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First order theory of gravity

First order theory gravity contd.

This is not a quantum theory of gravity and hence there is no natural
energy scale associated with it.
EOM of Kµ

ab with the modified spinor derivative from Lψ of Eq. (7) is

Kµ
ab =

κ

4
ϵabcdecµ

∑
i

(
−λiLψ̄iLγdψiL + λiR ψ̄iRγdψiR

)
. (8)

Replacing the contortion from Eq. (8) into Eq. (7) we get

Lψ =
∑
i

(
i

2
ψ̄iγ

µ∂µψi −
i

2
∂µψ̄iγ

µψi +
1

8
ωµ

abeµc ψ̄i [σab, γc ]+ψi

−mψ̄iψi

)
− 1√

2

(∑
i

(
−λiLψ̄iLγdψiL + λiR ψ̄iRγdψiR

))2

. (9)

Redefined λ→
√

3κ
8 λ.
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First order theory of gravity

First order theory of gravity contd.

The spin-torsion interaction adds a quartic interaction to the Lagrangian
which is diagonal in mass basis.

Lint = − 1√
2

 ∑
i = all fermions

(
−λiLψ̄iLγdψiL + λiR ψ̄iRγdψiR

)2

(10)

1 We will include this interaction in both self-interaction (when both
the summands are neutrino currents ) and neutrino-non neutrino
(when one of the summands is neutrino current) interaction.

2 The λ’s are unknown. The κ only sets their mass dimension. Their
sizes can not be fixed from theories.

3 We will assume that the new interaction is maximally chiral i.e.
λiR = 0.
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First order theory of gravity

Neutrino flavor Hamiltonian

The Hamiltonian can be split into three parts,

H = HV + HM + Hνν . (11)

HV : vacuum oscillations.
HM : interaction with the non-neutrino matter, i.e. leptons and quarks.
Hνν : term corresponds to the self-interaction of neutrinos.

HV =
∆m2

4E

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
=

∆m2

2E

1

2
B⃗ · σ⃗ . (12)

HM =± ∆λλf nf

2
√
2

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
±
√
2GFne

(
1 0
0 0

)
= ±∆λλf nf√

2

1

2
B⃗ · σ⃗ ±

√
2GFne

1

2
L⃗ · σ⃗ . (13)
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First order theory of gravity

Neutrino flavour Hamiltonian - self interaction

Here, λf =

∑
d λdnd∑
d nd

, B⃗ = (sin 2θ, 0,− cos 2θ), L⃗ = (0, 0, 1).

Hνν = HWeak
νν + HSpin−Torsion

νν = HW
νν + HST

νν

HW
νν =

1

2

√
2GF (P⃗ − ⃗̄P) (14)

HST
νν =

√
2

4

1

2
[∆λ2B⃗ · (nP⃗ − n̄⃗̄P)B⃗ · σ⃗+

1

4
(λ2tot −∆λ2|B⃗|2)(nP⃗ − n̄⃗̄P) · σ⃗] . (15)

n =neutrino density and n̄ =antineutrino density.
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First order theory of gravity

Self-interaction contd.

Define : λ21 = gGF , λ2 = (2r + 1)λ1, λf = aλ1, τ = t/(∆m2/(2E ))−1

Parametrizing geometrical coupling using three parameters (a, g , r) and
using reduced time τ we write

∂τ P⃗ =

(
ω̂B⃗ +

√
2agrRf B⃗ +

√
2Rνgr

2B⃗ · (P⃗ − ⃗̄P)B⃗ +
√
2Re L⃗

+
√
2Rν fg ,r (P⃗ − ⃗̄P)

)
× P⃗ (16)

∂τ
⃗̄P =

(
−ω̂B⃗ +

√
2agrRf B⃗ +

√
2Rνgr

2B⃗ · (P⃗ − ⃗̄P)B⃗ +
√
2Re L⃗

+
√
2Rν fg ,r (P⃗ − ⃗̄P)

)
× ⃗̄P. (17)

1 Re,f ,ν,ν̄ = GFne,f ,ν,ν̄/(∆m2/(2E )), fg ,r = 1 + (1/4)g(2r + 1)
2 We will assume Rν = Rν̄ .
3 nproton = nneutron = nelectron. Hence, Rf = 7Re .
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Oscillation in presence of uniform density of neutrinos

Oscillation pattern for uniform neutrino density (IH)

E = 15.1 MeV, θ = 8.6◦, ∆m2 = 2.5× 10−3 eV2, µ0 = 1.76× 105, τ = 1
corresponds to 8.6 µs 2.
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P 3

r = 0.50
r = 0.00
r = 0.50

(a) a = 0 and r = 0, 0.5,−0.5.
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r = 0.50

(b) a = 0.1 and r = 0, 0.5,−0.5.

Figure: P3 dynamics for g = 1, (Rν ,Re) = (µ0/10, µ0/10).

2Y.-C. Lin and H. Duan, Phys. Rev. D 107, 083034 (2023)
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Oscillation in presence of uniform density of neutrinos

2r + 1 < 0 induces or suppresses flavour instability
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(a) P3 in IH for larger values of r .
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(b) P3 in NH for larger values of r .

Figure: For both of the panels (Rν ,Re) = (µ0/10, µ0/10), g = 1, a = 0.1.
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Oscillation in presence of varying density of neutrinos Uniform electron density (a = 0)

Oscillation for non-uniform neutrino density and uniform
electron density

Neutrino number density profile 3 (d = distance from centre of core)

Rν,ν̄(d) = Rν,ν̄(R)

(
1−

√
1− R2

d2

)
R2

d2
. (18)

R is the radius of the core. For ultrarelativistic neutrinos d ∝ t.

Rν,ν̄(τ) = Rν,ν̄(R)

(
1−

√
1−

τ20
τ2

)
τ20
τ2
. (19)

∆m2 = 2.5× 10−3 eV2 and E = 15.1 MeV. For R = 10 km, we find
τ0 = R∆m2/(2E ) = 4. The parameters are same as used before.

3H. Duan et al., 2011 J. Phys. G: Nucl. Part. Phys. 38 035201
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Oscillation in presence of varying density of neutrinos Uniform electron density (a = 0)

Oscillation patterns (IH, a = 0)

Remembering λ21 = gGF , λ2 = (2r + 1)λ1, λf = aλ1

25 50 75 100 125 150 175 200
distance in kms

1

0

1

P 3

r = 2.00
r = 1.00
r = 0.00
r = 1.00
r = 2.00

(a) P3 for different r when g = 0.5.

25 50 75 100 125 150 175 200
distance in kms

1

0

1

P 3
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r = 1.00
r = 0.00
r = 1.00
r = 2.00

(b) P3 for different r when g = 1.5.
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(c) Details of above figure.

150 160 170 180 190 200
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P 3

r = 2.00
r = 1.00
r = 0.00
r = 1.00
r = 2.00

(d) Details of above figure.

Figure: In both panels Rν(R) = Rν̄(R) = µ0/10 = Re .
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Oscillation in presence of varying density of neutrinos Uniform electron density (a = 0)

Change in the detector signal (IH, a = 0)

The initial oscillations will not be visible at a detector. The νe survival
probability at any point will be given by

PS =
1

n
Tr

(
ρ

(
1 0
0 0

))
=

1 + P3

2
(20)

where, ρ =
1

2
n(I2 + P⃗ · σ⃗). (21)

We are concerned with PS far away from the core. We define

∆P(g , r) =
PS(g , r)− PS(0, 0)

PS(0, 0)
=

P∞(g , r)− P∞(0, 0)

1 + P∞(0, 0)
(22)

P∞ = P3 far away from the core.
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Oscillation in presence of varying density of neutrinos Uniform electron density (a = 0)

Change in the detector signal contd. (a = 0)
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(a) ∆P for varying r
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(b) ∆P for varying g

Figure: In both panels Rν(R) = Rν̄(R) = µ0/10 = Re , a = 0.

2r + 1 = 0 is a crossing point in left panel. ∆P ≈ 0 for r = −0.5 in the
right panel.
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Oscillation in presence of varying density of neutrinos Uniform electron density (a = 0.1)

Oscillation patterns (IH, a = 0.1)
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(a) P3 for g = 1.0, r = 1.00.
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(b) P3 for g = 1.0, r = −1.00.

Figure: In both panels Rν(R) = Rν̄(R) = µ0/10 = Re .

Indrajit Ghose (SNBNCBS) CCSN Neutrino Torsion PRL 20 / 25



Oscillation in presence of varying density of neutrinos Uniform electron density (a = 0.1)

Change in detector signals (IH, a = 0.1)

∆P(g , r) =
⟨PS(g , r)⟩ − ⟨PS(0, 0)⟩

⟨PS(0, 0)⟩
=

P∞(g , r)− P∞(0, 0)

1 + P∞(0, 0)
(23)

P∞ = ⟨P3⟩ , angular bracket is average over large number of periods.
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(a) ∆P when varying r .
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(b) ∆P when varying g .

Figure: In both panels Rν(R) = Rν̄(R) = µ0/10 = Re , a = 0.1.
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Conclusion

Conclusion

1 The effect of spin-torsion interaction affects the neutrino oscillation in
CCSN.

2 In the presence of uniform neutrino density, λ2 − λ1 < 0 can alter the
flavor stability in Inverted and Normal Hierarchy.

3 Uniform density induces no permanent flavour change. When the
neutrino density varies with the distance from core, there is a
permanent flavour change.

4 We found that the presence of spin-torsion interaction changes the
survival probability by a factor of 2.

5 Data from future Megaton detectors can put a stronger constraint on
the spin-torsion coupling constants. A proper event level analysis on a
specific detector will be carried out elsewhere.

Indrajit Ghose (SNBNCBS) CCSN Neutrino Torsion PRL 22 / 25



Acknowledgement

Acknowledgement

1 Prof. Amitabha Lahiri

2 Ms. Riya Barick

3 Part of the computation is done on the HPC facilities in SNBNCBS.

THANK YOU

Indrajit Ghose (SNBNCBS) CCSN Neutrino Torsion PRL 23 / 25



Backup Slides

Backup slides

BACKUP SLIDES

Indrajit Ghose (SNBNCBS) CCSN Neutrino Torsion PRL 24 / 25



Backup Slides

Density matrix

ρ =
1

2
nν(I2 + P⃗ · σ⃗) (24)

ρ̄ =
1

2
nν̄(I2 + ⃗̄P · σ⃗) (25)

P⃗ = (0, 0,±1) for νe (νx).
⃗̄P = (0, 0,±1) for ν̂e (ν̂x).
νx is a linear combination of νµ and ντ .
Survival probability of νe is

PS =
1

n
Tr

(
ρ

(
1 0
0 0

))
=

1 + P3

2
. (26)
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