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✦ The source pointing resolution of DUNE at (GeV) neutrino 
energy 

✦ Sensitivity of DUNE to Dark Matter annihilation in the Sun, and 
comparison with other experiments (neutrino and direct-
detection) 

✦ Sensitivity of DUNE to Inelastic Dark Matter annihilation in the 
Sun 

✦ Future directions
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The Sun moves through a halo of dark matter which is 
gravitationally bound to our galaxy.

Gravitational Capture of Dark Matter

3

Sun

χ

Dark matter “wind”

v ~ 220 km/s 

vesc ~ 600 km/s 
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A fraction of these incident DM particles interact with solar media, lose kinetic 
energy, get gravitationally bound to the Sun, and eventually drift to the core. 

Gravitational Capture of Dark Matter
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Press and Spergel [1985];    A. Gould  [1987];    Griest and Seckel [1987];    … 

Sun

χ

vin ~ 220 km/s 

vesc ~ 600 km/s 

vf
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The number density of DM in the Sun keeps increasing till an 
equilibrium between capture, evaporation, and annihilation is achieved.

Gravitational Capture of Dark Matter
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Sun

·Nχ = ΓC − ΓE − ΓA ≡ C − E Nχ − A N2
χ
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The neutrinos produced in DM annihilation escape the Sun,  
and can be detected by large volume underground neutrino experiments. 

Gravitational Capture of Dark Matter

6

Sun

χχ → qq . . .
→ ν + . . .
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• If dark matter annihilates to quarks, they produce mesons that 
eventually decay inside Sun, producing neutrinos.   

• We use “Poor Particle Physicist’s Cookbook for Neutrinos from 
Dark Matter annihilation in the Sun” (PPPC 4 DM ) to get the 
spectrum of neutrinos 

• The flux of  is —

ν

να

Neutrino flux from DM in the Sun
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Baratella et al. JCAP 03 (2014) 053 

dΦα

dEν
=

ΓA

4πd2 ∑
β

Pαβ
dφβ

dEν

Rate of  annihilation of  DM in Sun

Spectrum of  neutrinos  
per annihilation

Flavor Conversion150 million km

ΓA
eq

⟶ Γcap / 2
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Neutrino flux from DM in the Sun
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Flux at source obtained using PPPC 4 DM  ν

“Spike”

Rott et al., Phys. Rev. D 88 (2013) 055005; 
Bernal et al., JCAP 08 (2013) 011

“Shoulder”

K+ → μ+ + νμ
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Neutrino flux from DM in the Sun
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Flux at source obtained using PPPC 4 DM  ν

and anti-neutrinos
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Neutrino Flux from DM in the Sun
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*not to scale

detector

Sun

The neutrinos undergo flavor conversion inside 
the Sun, in vacuum to Earth, and inside Earth 

during night.
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Neutrino Flux from DM in the Sun
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dΦD
α

dEν
=

dΦE
e

dEν
× ⟨PED

eα ⟩ +
dΦE

μ

dEν
× ⟨PED

μα ⟩ +
dΦE

τ

dEν
× ⟨PED

τα ⟩

Obtained using PPPC 4 DMν

Obtained using NuCraft and AstroPy

*not to scale

detector

Sun

dΦD
α

dEν

dΦE
α

dEν



/60Bhavesh Chauhan, BITS Pilani

Neutrino Flux from DM in the Sun
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dΦD
α

dEν
=

dΦE
e

dEν
× ⟨PED

eα ⟩ +
dΦE

μ

dEν
× ⟨PED

μα ⟩ +
dΦE

τ

dEν
× ⟨PED

τα ⟩

Obtained using PPPC 4 DMν

Obtained using NuCraft and AstroPy
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dΦE
α

dEν
=

ΓA

4πd2 ∑
β

PSE
αβ

dφβ

dEν

In summary, the flux of  at the detector is —να

Neutrino flux from DM in the Sun
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dΦD
α

dEν
=

dΦE
e

dEν
× ⟨PED

eα ⟩ +
dΦE

μ

dEν
× ⟨PED

μα ⟩ +
dΦE

τ

dEν
× ⟨PED

τα ⟩

Different for elastic and inelastic dark matter

where,
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Scintillation 
Detectors

How do we detect neutrinos?
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Water/Ice 
Cherenkov

Time Projection 
Chamber

Good Energy Resolution 

Poor Direction 
Reconstruction

Borexino, KamLAND, 
SNO+, …

Poor Energy Resolution 

Good Direction 
Reconstruction

Super-Kamiokande, 
IceCube, SNO … 

Good Energy Resolution 

Good Direction 
Reconstruction

MircoBooNE, DUNE



/60Bhavesh Chauhan, BITS Pilani

Current Status

15
See the paper for references

* denotes analysis by the respective collaboration

Can reconstruct neutrino energy

Can reconstruct neutrino direction
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• We are interested in detecting neutrinos with energy in the 
range 100 MeV — 100 GeV  

• At these scales, earth atmospheric neutrinos are the dominant 
background  

• We use the flux predictions at Super-Kamiokande by Honda et 
al. and account for flavor conversion inside Earth using NuCraft 

• Interaction cross sections & differential distributions are 
obtained using the Monte Carlo generator NuWro

Atmospheric Neutrino Background
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Phys. Rev. D 92 (2015) 2, 023004

Phys. Rev. C 86 (2012) 015505
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Atmospheric Neutrino Background

17
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• For a 34 kton Liquid Argon Time Projection Chamber (LArTPC) 
detector (DUNE), we estimate 2300 charged-current events every 
year from atmospheric muon neutrinos above 100 MeV. 

• However, not all of these events constitute the background.  
• Only the atmospheric neutrinos that “appear” to be coming from 

the direction of the Sun are backgrounds. 

Atmospheric Neutrino Background

18
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• As any neutrino detector can only see the charged 
particles produced in the interactions, the direction of 
the incident neutrino can only be inferred. 

• We look at ‘starting tracks’ in DUNE which are most 
likely due to charged-current interactions of  and  νμ νμ

Atmospheric Neutrino Background
Allegory of the Cave Neutrino Detector

19

• There may be auxiliary particles (protons and pions) that 
may help in reconstruction, but we do not consider them. 

• We also assume perfect energy and angular resolution 
for the tracks
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The question is — 
Given a muon-like track, can we say whether 

the initial neutrino originated in the Sun?

Atmospheric Neutrino Background
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μ
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Atmospheric Neutrino Background

We want to determine  such that there is a reasonable  
(say, 90%) chance that the incident neutrino is within the cone

θ c
μ

The first step is to look at high-energy tracks as they are 
more collinear

μ

νμ

θ c
μ

 track directionμ

true  direction
ν

θμ
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Atmospheric Neutrino Background

We consider three benchmark choices*  

for : 500 MeV, 1 GeV, and 5 GeVE th
μ

*We do not optimise this choice but it represents a low-, moderate-, and high-energy cutoff

Eμ > E th
μ

θ c
μ μ

νμ

θμ
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Atmospheric Neutrino Background

23

Eμ > E th
μ

θ c
μ μ

νμ

θμ

Note: 2300 events/(34 kton-yr) above 100 MeV
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Atmospheric Neutrino Background

To determine the cone half-angle such that 90% neutrinos are 
inside the cone (  ) we evaluate the distribution of  folded 

with the oscillated atmospheric neutrino flux using NuWro
θ 90

μ θμ

Eμ > E th
μ

θ c
μ μ

νμ

θμ
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Simulated with NuWro using oscillated atmospheric neutrino flux

Atmospheric Neutrino Background

25
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Simulated with NuWro using oscillated atmospheric neutrino flux

Atmospheric Neutrino Background
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Simulated with NuWro using oscillated atmospheric neutrino flux

Atmospheric Neutrino Background
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Determine  for which f [ ] = 0.9θ 90
μ θμ < θ c

μ

Atmospheric Neutrino Background

28

~15 Deg ~30 Deg ~40 Deg

Numerical value of  is determined by choice of θ 90
μ E th

μ

The atmospheric background is reduced by factor   
1
2 (1 − cos θ 90

μ )
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Atmospheric Neutrino Background

Depending on the position of 
the Sun at the time,  

the event is accepted/rejected

In practice, if you observe a muon with energy > 1 GeV,  
there is 90% chance that the incident neutrino is within  

a cone of half-angle 30 Degree



/60Bhavesh Chauhan, BITS Pilani

For numerical estimate of the irreducible background rate —

Atmospheric Neutrino Background

30

Natm
sel = NAr ⋅ t ×

1
2

(1 − cos θ 90
μ )∑

μ± ∫ dEν
dΦatm

dEν
× σtot × η atm

th (Eν, E th
μ )

atmospheric  
background  
events that pass the  
selection criterion
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Same filters must be applied to ‘signal’ from the Sun

νμ

θ 90
μ

μ

For neutrino of energy , we determine the probability of 

creating a muon with  and 

Eν
Eμ > E th

μ θμ < θ 90
μ

θμ

Reduced Signal

31
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 = Probability of creating a muon with  and ηsig
sel Eμ > E th

μ θμ < θ 90
μ

Reduced Signal

32
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Reduced Signal

33

• The signal event rate — 

• 90% C.L. Sensitivity obtained by assuming Poisson statistics 
and ‘rejecting signal+background’

Nsig
sel = NAr ⋅ t × ∑

μ± ∫ dEν
dΦD

dEν
× σtot × ηsel+dir(Eν, E th

μ )

Excluded if  

N sig
sel ∼ Nexcl

90

Dark Matter  
Parameters Detector physics  

and Backgrounds
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DUNE Sensitivity — Spin Independent Elastic DM

34
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The case for  
Inelastic Dark Matter

35
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• The dark sector has two particles separated in mass  
by a small splitting  

• Lighter state is the cosmological Dark Matter 
• Only off-diagonal interactions are allowed

δ

Inelastic Dark Matter

36

χ1 χ2

N N

δ = M2 − M1 > 0
(DM)

Tucker-Smith and Weiner Phys. Rev. D 64 (2001) 043502
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The rate of nuclear recoils in a direct-detection experiment is -  

Inelastic Dark Matter - Direct Detection

37

ℛDD = ∫
Emax

R

Emin
R

dER
ρχ

MNMχ ∫vmin

d3v v f( ⃗v)
dσχN

dER

Detector  
thresholds

0.3 — 0.4 GeV/cm3

Thermal distribution  
with a cut-off

Particle physics models  
and Form Factors

“The minimum dark matter velocity  
required for detectable recoils”
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• As a part of the energy budget goes into producing the 
heavier state, only DM particles with sufficient kinetic 
energy (i.e., from the high-velocity tail) take part in the 
interactions 

• Event rates are suppressed w.r.t. elastic DM 

• We use WimPyDD to calculate the event rates  ℛ

Inelastic Dark Matter - Direct Detection

38

vmin(ER) =
1

2MNER ( MN

μχN
ER + δ)

Jeong et al. Comput. Phys. Commun. 276 (2022) 108342

δ = M2 − M1 > 0
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We focus on two of the most* sensitive direct detection experiments - PICO and LZ

Inelastic Dark Matter - Direct Detection

39

The bubble chamber 
detector PICO-60 with 
C3F8 target. 

Sensitive to low-mass 
dark matter

PICO Collaboration Phys. Rev. D 100, 022001 (2019)

Evaporation 
Dominates

👉
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Inelastic Dark Matter - Direct Detection
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The xenon based scintillation detector : LUX-ZEPLIN (LZ) 
World-leading sensitivity for dark matter heavier than 9 GeV

Phys. Rev. Lett. 131 (2023) 4, 041002
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Inelastic Dark Matter - Direct Detection
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To “map” the limits for elastic dark matter to the parameters 
of inelastic dark matter, we use the relative event rate - 

kDD(Mχ, δ) =
ℛDD(Mχ, δ)
ℛDD(Mχ,0)

Both elastic and inelastic event rates obtained using WimPyDD

σlim
DD(Mχ, δ) = σlim

DD(Mχ,0) × kDD(Mχ, δ)

Limit for Elastic DM 
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Inelastic Dark Matter - Direct Detection
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kDD(Mχ, δ) = ℛDD(Mχ, δ) / ℛDD(Mχ,0)

kDD = kPICO kDD = kXe
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The phase-space for gravitational capture is 
much smaller for inelastic DM

Inelastic Dark Matter - Capture in Sun

43

Nussinov et al. JCAP 08 (2009) 037
Menon et al. Phys.Rev.D 82 (2010) 015011

Figure from Blennow et al. JCAP 04 (2016) 004
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The phase-space for gravitational capture is 
much smaller for inelastic DM

Inelastic Dark Matter - Capture in Sun

44

kcap(Mχ, δ) =
Γcap(Mχ, δ)
Γcap(Mχ,0)

We evaluate the relative capture rate using method 
outlined in Blennow et al. JCAP 04 (2016) 004
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There exists parameter space where capture isn’t drastically 
suppressed but direct-detection experiments are insensitive

Inelastic Dark Matter - Capture in Sun

45
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Inelastic Dark Matter - Capture in Sun
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• The inelasticity parameter  does not change the neutrino 
spectrum and only affects the capture rate in the Sun. 

• The existing limits on elastic DM from Super-Kamiokande 
and IceCube can be translated using 

δ

kcap

σSI
lim(Mχ, δ) = σSD

lim(Mχ)
ΓSI

cap(Mχ, σ0)
ΓSD

cap(Mχ, σ0)
× kcap(Mχ, δ)

σSI
lim(Mχ, δ) = σSI

lim(Mχ) × kcap(Mχ, δ)

Limit for Elastic DM 
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Results
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• Three parameters of inelastic dark matter —  

• Mass of dark matter ( ),  

• mass-splitting ( ), and  

• spin-independent interaction cross section ( ) 

• In the following plots, we will show —  
• Mapped existing limits from direct-detection experiments 
• Mapped existing limits from Super-Kamiokande and IceCube 
• Mapped Projected Sensitivity of Hyper-Kamiokande 
• Projected Sensitivity of DUNE: 

— Mapped for Spike 

— Evaluated for Shoulder

Mχ

δ = M2 − M1

σSI
χp

This  
Work}
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Results : 10 GeV Dark Matter
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Heavy Quark ChannelLight Quark Channel

DUNE will not be able to compete with 
water Cherenkov detectorsOnly DUNE will be sensitive
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Results : 25 GeV Dark Matter
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Heavy Quark ChannelLight Quark Channel

DUNE will not be able to compete with 
water Cherenkov detectorsOnly DUNE will be sensitive
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• Include the auxiliary particles in the direction 
reconstruction 

• Event-by-event analysis 

Future Directions
Improvements :

51

Sources :

• Inelastic Dark Matter in the Halo 
• Non-galactic component



/60Bhavesh Chauhan, BITS Pilani

• Large volume underground neutrino detectors (such as IceCube, Super/
Hyper-Kamiokande, DUNE, …) can search for high energy neutrinos 
from the direction of the Sun. 

• We find that the neutrino constraints on inelastic dark matter captured in 
the Sun are stronger than direct-detection experiments for low-mass  
dark matter. 

• The water/ice Cherenkov detectors have better sensitivity to shoulder 
neutrinos, so they are important for heavy-quark channel.  

• Only DUNE will be sensitive to dark matter annihilation to light-quarks 
through spike-neutrinos 

• Current limits do NOT rule out the possibility of low-mass inelastic dark 
matter that couples only to light-quarks, and DUNE can test this scenario.

Summary and Outlook

52
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Backup
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